Bis(µ**-oxo)(**µ**-hydroxo)triiron(III) and (**µ**-oxo)(**µ**-hydroxo)diiron(III) Core Complexes with Tripodal Ligands Having a Terminal Carboxylate Group**

Hideki Furutachi, Yuya Ohyama, Yasutaka Tsuchiya, Koji Hashimoto, Shuhei Fujinami, Akira Uehara,

Masatatsu Suzuki,* and Yonezo Maeda†

Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 †*Department of Chemistry, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, 812-8581*

(Received July 13, 2000; CL-000668)

The tripodal ligands ($6Me₂$ -BPG and BPG) containing the carboxylate donor afford two types of $Fe₂(O)(OH)$ and $Fe₃(O)₂(OH)$ core complexes, depending upon the methyl-substituent effect on the 6-position of the pyridyl ring.

Bimetallic oxo frameworks $M_2(\mu$ -O)₂ have been shown as a common motif of a reactive high valent bimetallic species of Cu^{III} ₂, Fe^{III}Fe^{IV}, Ni^{III}₂, and Co^{III} ₂ and a key intermediate for oxygenation of C–H bond in ligands.¹ Especially, an Fe₂(O)₂ core² has been proposed as a key intermediate in the process of dioxygen activation by diiron centers in methane monooxygenase (MMOH) and ribonucleotide reductase (RNR), whose coordination environments are carboxylate-rich relative to that of hemerythrin (Hr).³ Recently Que et al. have reported the structures and properties of the $Fe₂(O)₂$, $Fe₂(O)(OH)$, and $Fe₃(O)₃$ core complexes with the tetradentate ligands having four nitrogen donors,⁴ but there is no structurally characterized $Fe₂(O)₂$, $Fe₂(O)(OH)$, and $Fe₃(O)₃$ core complexes with a terminal carboxylate oxygen donor. Therefore, it is important to explore how the nature of carboxylate donor in a terminal ligand influences the structures and properties of the cores mentioned above. Here we report the structures and properties of a $(\mu$ -oxo)(μ -hydroxo)diiron(III) and a bis(μ -oxo)(μ -hydroxo)triiron(III) complex with the tripodal ligands ($6Me₂$ -BPG and BPG ⁵ containing the carboxylate group.

Reaction of $[Fe₂(6Me₂-BPG)₂(O)(AcO)]ClO₄(1)$ with 2 equiv of Et_3N in methanol affords red crystals, $[Fe₂(6Me₂ BPG$ ₂(O)(OH)]ClO₄(2)⁶ An ORTEP view of 2 is shown in Figure 1.⁷ Two Fe ions are bridged by oxo and hydroxo oxygens to form a $(\mu$ -oxo) $(\mu$ -hydroxo)diiron(III) core. **2** is the first structurally characterized $(\mu$ -oxo) $(\mu$ -hydroxo)diiron(III) complex with the carboxylate oxygen donor, while three structurally characterized Fe₂(O)(OH) complexes, $[Fe₂(X)₂(O)(OH)](ClO₄)₃$ $(X = 6Me₃-TPA$ (3), BQPA (4), BPEEN (5)), with the N₄ tetradentate ligands have been reported.⁴ Each Fe ion in **2** has an octahedral geometry consisted of N_3O_3 donor set, where three N donor atoms are in a mer-arrangement. The Fe···Fe separation is 2.899(2) Å, which is in the middle of the range for the Fe₂(O)(OH) core complexes (2.835(1)–2.948(3) Å).⁴ The Fe–O–Fe and Fe–OH–Fe angles are $103.9(4)$ and $91.5(3)$ °, respectively, which are comparable to those of **5** (Fe–O–Fe: 100.2(2); Fe–OH–Fe: $91.1(2)^{\circ}$).^{4c} The Fe–O_{oxo} and Fe–O_{OH} bonds trans to the carboxylate oxygens (Fe(1)–O(6): $1.873(8)$ Å, Fe(2)–O(5): 2.083(9) Å) are significantly longer than their respective bonds trans to the amino nitrogens (Fe(2)– $O(6)$: 1.807(7) Å, Fe(1)–O(5): 1.962(6) Å) owing to the trans effect of the stronger electron donor ability of the carboxylate oxygen. The observed asymmetry of the Fe–O_{oxo} ($\Delta r = 0.066$ Å) and Fe–O_{OH} ($\Delta r = 0.121$ Å) bonds in 2 is significantly larger than those in **5** (Fe–O_{oxo}: $\Delta r = 0.004$ Å, Fe–O_{OH}: $\Delta r = 0.017$ Å).⁴ Thus the terminal carboxylate donor gives rise to a significant distortion of the $Fe₂(O)(OH)$ diamond core as compared with the pyridyl nitrogen donor in N_4 tetradentate ligands.⁴ It is noted that deprotonation of the bridging hydroxide ion from the Fe₂(O)(OH) core in **3** takes place to produce a Fe₂(O)₂ core,^{4a} whereas 2 does not afford a $Fe₂(O)$ ₂ core even under more basic conditions. This fact suggests that the terminal carboxylates lower a Lewis acidity of the Fe center in **2**, which make the deprotonation of the bridging hydroxide ion difficult.

Figure 1. An ORTEP drawing of the cationic part of $[Fe_2(6Me_2-BPG)_2(O)(OH)]ClO_4$ (2). Selected Bond Distances (Å) and Angles (deg): $F_1 = 012.007(7)$; Fe1 – 05 1.962(6); Fe1 – 06 1.873(8); Fe1 – N1
2.179(8); Fe1 – N2 2.232(5); Fe2 – 03 2.053(7); Fe2 – 05 2.083(9); Fe2 – 06 1.807(7); Fe2 – N3 2.218(8); Fe2 – N4 2.185(5); Fe1...Fe2 2.899(2). Fe1 $-$ O5 – Fe2 91.5(3); Fe1 – O6 – Fe2 103.9(4).

The Mössbauer spectrum of **2** at 84 K consists of a sharp single quadrupole doublet with $\delta = 0.51$, $\Delta E_O = 2.19$, and $\Gamma_{ave} =$ 0.43 mm/s, which is characteristic of high spin $(\mu$ oxo)diiron(III) complexes.8 The value of ∆*EQ* for **2** is significantly larger than that of **3** ($\Delta E_Q = 1.66$ mm/s),^{4b} implying a larger electric field gradient around the iron(III) ions, probably due to perturbation from the terminal carboxylate group in $6Me_2-BPG.$

Reaction of $[Fe₂(BPG)₂(O)(AcO)]ClO₄(7)$ with 2 equiv of Et₃N in methanol affords black crystals, $[Fe₃(BPG)₃(O)₂(OH)]$ -ClO₄ (8·ClO₄).⁹ X-ray crystallography of $[Fe₃(BPG)₃(O)₂(OH)]$ - CF_3SO_3 (8· CF_3SO_3),¹⁰ reveals that 8 · CF_3SO_3 has the first example of a bis(μ -oxo)(μ -hydroxo)triiron(III) core with a hexagonlike ring (Figure 2). Each Fe ion assumes an octahedral geometry with the N_3O_3 donor set, where three N donor atoms are in a mer-arrangement as observed for 2 . The average Fe–O_{oxo} bond distance (1.82 Å) is slightly shorter than that of **2** (1.84 Å) and the average Fe–O_{OH} bond distance (1.98 Å) is also shorter than that of 2 (2.02 Å). The average Fe–O–Fe angle (142.7[°]) is much larger than the Fe–OH–Fe angle (129.4(2)˚). The $Fe-O_{oxo}$ and $Fe-O_{OH}$ bond distances are also substantially affected by the terminal carboxylate in the trans-position as observed for 2; the Fe– $O_{\alpha x}$ and Fe– O_{OH} bonds trans to the carboxylate oxygens (Fe(1)–O(3): 2.012(4) Å, Fe(2)–O(1): 1.873(4) Å, Fe(3)–O(2): 1.811(4) Å) are significantly elongated compared with those trans to the amino nitrogens $(Fe(3)-O(3))$: 1.938(4) Å, Fe(2)–O(2): 1.784(4) Å, Fe(1)–O(1): 1.795(4) Å).

Figure 2. An ORTEP drawing of the cationic part of $[Fe_3(BPG)_3(O)_2(OH)]CF_3SO_3.2H_2O$ (8 CF₃SO₃). Selected Bond Distances (Å) and Angles (deg): Fe1 - O1 1.795(4); Fe1 - O3 2.012(4); Fe1 - O4 2.049(4); Fe1 - N1 2.287(5); Fe1 - N2 2.209(5); Fe1 - N3 2.227(5); Fe2 -O1 1.873(4); Fe2 - O2 1.784(4); Fe2 - O6 2.069(4); Fe2 - N4 2.250(6); Fe2 $-$ N5 2.248(5); Fe2 $-$ N6 2.240(6); Fe3 $-$ O2 1.811(4); Fe3 $-$ O3 1.938(4); Fe3 - O8 2.087(4); Fe3 - N7 2.207(5); Fe3 - N8 2.198(5); Fe3 - N9 2.194(5); Fe1...Fe2 3.478(1); Fe1...Fe3 3.572(1); Fe2...Fe3 3.404(2). Fe1 -O1 – Fe2 143.0(2), Fe2 – O2 – Fe3 142.4(2), Fe1 – O3 – Fe3 129.4(2)

Recently, Que et al. reported a tri $(\mu$ -oxo)triiron(III) complex, $[Fe₃(5Et₃-TPA)₃(O)₃]^{3+}$ (9) with four nitrogen donors.^{4c} In contrast to the formation of the $Fe₃(O)₃$ core in **9**, the $Fe₃(O)₂(OH)$ core is formed in **8**. This fact also reflects the stronger electron donor ability of the terminal carboxylate oxygen. It must be noted that introduction of the methyl groups into the 6-position of the pyridyl ring causes a remarkable structural change between 2 and 8 , i.e., 2 has the $Fe₂(O)(OH)$ core, whereas **8** has the $Fe₃(O)₂(OH)$ core. Such a change of the core structure reflects the unfavorable steric interaction between 6-methyl groups on the pyridyl ring.

The Mössbauer spectrum of 8 ^{CF_3SO_3 at 293 K exhibits a} broad single quadrupole doublet with $\delta = 0.35$, ΔE _{*Q*} = 1.62, and ^Γ*ave* = 0.76 mm/s, which is due to overlapping of closely spaced two sets of quadrupole doublets attributable to the bis(μ oxo)Fe^{III} and the $(\mu$ -oxo)(μ -hydroxo)Fe^{III} moieties. It should be noted that Mössbauer spectrum of 8[°]CF₃SO₃ at 293 K significantly differs from that at 95 K; the two peaks becomes broader at 95 K. The spectral change may be explained by the relaxation effect due to a long Fe \cdots Fe distance (3.404(2)–3.572(1) Å). Further, the peak of lower energy side is broader than that of higher energy side at 95 K. Since the broaden peak is observed at a lower energy side, the quadrupole splitting parameter e²qQ is negative, i.e., $|\pm 3/2\rangle$ state in Mössbauer excited state is lower than $| \pm 1/2 \rangle$ state.

In conclusion, the tripodal ligands containing the carboxylate donor afford two types of $Fe₂(O)(OH)$ and $Fe₃(O)₂(OH)$ cores, depending upon the methyl-substituent effect on the 6 position of the pyridyl ring. The stronger electron donor ability of the terminal carboxylate causes a significant asymmetric distortion for the rhomb Fe₂(O)(OH) and hexagon Fe₃(O)₂(OH) cores.

This work was supported by a Grants-in-Aid for Scientific Research, from the Ministry of Education, Science, Sports and Culture, Japan (M. S.), and by the JSPS Research Fellowships for Young Scientists (H. F.).

References and Notes

- 1 a) J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, Jr., L. Que, Jr., A. D. Zuberbühler, and W. D. Tolman, *Science*, **271**, 1397 (1996). b) A. Cole, D. E. Root, P. Mukherjee, E. I. Solomon, and T. D. P. Stark, *Science*, **273**, 1848 (1996). c) H. Hayashi, S. Fujinami, S. Nagatomo, S. Ogo, M. Suzuki, A. Uehara, Y. Watanabe, and T. Kitagawa, *J. Am. Chem. Soc.*, **122**, 2125 (2000). d) Y. Dong, L. Que, Jr., K. Kauffman, and E. Münck, *J. Am. Chem. Soc.*,**117**, 11377 (1995); H. -F. Hsu, Y. Dong, L. Shu, V. G. Young, Jr., and L. Que, Jr., *J. Am. Chem. Soc.*, **121**, 5230 (1999). e) S. Hikichi, M. Yoshizawa, Y. Sasakura, M. Akita, and Y. Moro-oka, *J. Am. Chem. Soc.*, **120**, 10567 (1998). f) K. Shiren, S. Ogo, S. Fujinami, H. Hayashi, M. Suzuki, A. Uehara, Y. Watanabe, and Y. Moro-oka, *J*. *Am*. *Chem*. *Soc*., **122**, 254 (2000).
- 2 L. Shu, J. C. Nesheim, K. Kauffmann, E. Münck, J. D. Lipscomb, and L. Que, Jr., *Science*, **275**, 515 (1997).
- 3 a) R. E. Stenkamp, *Chem. Rev.*, **94**, 715 (1994). b) A. L. Feig and S. J. Lippard, *Chem. Rev.*, **94**, 759 (1994). c) B. J. Wallar and J. D. Lipscomb, *Chem. Rev.*, **96**, 2625 (1996).
- 4 a) Y. Zang, G. Pan, L. Que, Jr., B. G. Fox, and E. Münck, *J. Am. Chem. Soc.*, **116**, 3653 (1994). b) Y. Zang, Y. Dong, L. Que, Jr., K. Kauffmann, and E. Münck, *J. Am. Chem. Soc.*, **117**, 1169 (1995). c) H. Zheng, Y. Zang, Y. Dong, V. G. Young, Jr., and L. Que, Jr, *J. Am. Chem. Soc.*, **121**, 2226 (1999).
- 5 Abbreviations used: BPG, *N,N*-bis(2-pyridylmethyl)glycinate; 6Me₂-BPG, *N*,*N*-bis(6-methyl-2-pyridylmethyl)glycinate; 6Me₃-TPA, tris(6methyl-2-pyridylmethyl)amine; BQPA, bis(2-quinolylmethyl)(2 pyridylmethyl)amine; 5Et₃-TPA, tris(5-ethyl-2-pyridylmethyl)amine; BPEEN, *N*,*N*-diethyl-*N*,*N*-bis(2-pyridylmethyl)ethane-1,2-diamine.
- 6 **1**·4.5H₂O: Anal. Calcd for $C_{34}H_{74}CIFe_2N_6O_{15.5}$: C, 43.63; H, 5.17; N, 8.98 %. Found: C, 43.43; H, 4.74; N, 9.02 %. **2**: Calcd for C₃₂H₃₇ClFe₂N₆O₁₀: C, 47.29; H, 4.59; N, 10.34 %. Found: C, 47.17; H, 4.57; N, 10.35 %. Reflectance spectrum of **2** (λ / nm): 378, 522, 740 (complex **2** was insoluble in common organic solvents).
- Crystal data for $[Fe₂(6Me₂-BPG)₂(O)(OH)]CIO₄ at -150 °C. Red$ plate, fw = 812.83, orthorhombic, space group $Pmn2_1$ with $Z = 2$, *a* = 14.973(2), *b* = 14.998(2), *c* = 7.693(3) Å, *V* = 1727.6(5) Å³, *D_c* =
- 1.562 g cm⁻³. $R = 0.047$ and $R_w = 0.065$ for 1575 data.
8 D. M. Kurtz, Jr., *Chem. Rev.*, **90**, 585 (1990); L. Que, Jr. and A. E. True, *Prog. Inorg. Chem*., **38**, 97 (1990).
- 9 **7**·3H₂O: Calcd for C₃₀H₃₇ClFe₂N₆O₁₄: C, 42.25; H, 4.37; N, 9.85 %. Found: C, 42.50; H, 4.12; N, 9.90 %. **8·**ClO₄·5H₂O: Calcd for $C_{42}H_{53}C$ IFe₃N₉O₁₈: C, 42.94; H, 4.55; N, 10.73 %. Found: C, 42.95; H, 4.44; N, 10.95 %. **8·**CF₃SO₃·3H₂O: Calcd for C₄₃H₄₉F₃Fe₃N₉O₁₅S: C, 43.46; H, 4.16; N, 10.61 %. Found: C, 43.31; H, 4.10; N, 10.57 %. Absorption spectrum of $\text{8-CF}_3SO_3:3H_2O$ [λ / nm (ε / M⁻¹ cm⁻¹)] in water: 466 (470), 500 (sh, 385), 565 (sh, 255), 650 (sh, 145); reflectance spectrum (λ / nm) : 415 (sh), 468, 565 (sh), 650 (sh).
- Crystal data for $[Fe₃(BPG)₃(O)₂(OH)]CF₃SO₃·2H₂O$ at –110 °C. Dark green prisms, fw = 1170.49, trigonal, space group $\overline{P3}$ with \overline{Z} 6, $a = 23.963(2)$, $c = 15.164(3)$ Å, $V = 7540(1)$ Å³, $D_c = 1.546$ g cm⁻³. $R = 0.034$ and $R_w = 0.044$ for 2813 data. Three water molecules per asymmetric unit were suggested by the elemental analysis, although we could not locate one water molecule.